Multi-index Monte Carlo: when sparsity meets sampling

نویسندگان

  • Abdul-Lateef Haji-Ali
  • Fabio Nobile
  • Raúl Tempone
چکیده

We propose and analyze a novel Multi Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. This in turn yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL−2). Moreover, we motivate the systematic construction of optimal sets of indices for MIMC based on properly defined profits that in turn depend on the average cost per sample and the corresponding weak error and variance. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. In some cases, using optimal index sets, MIMC achieves a better rate for the computational complexity than does the corresponding rate when using Full Tensor sets. We also show the asymptotic normality of the statistical error in the resulting MIMC estimator and justify in this way our error estimate, which allows both the required accuracy and the confidence in our computational results to be prescribed. Finally, we include numerical experiments involving a partial differential equation posed in three spatial dimensions and with random coefficients to substantiate the analysis and illustrate the corresponding computational savings of MIMC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors

Sparsity has become a key concept for solving of high-dimensional inverse problems using variational regularization techniques. Recently, using similar sparsity-constraints in the Bayesian framework for inverse problems by encoding them in the prior distribution has attracted attention. Important questions about the relation between regularization theory and Bayesian inference still need to be ...

متن کامل

Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques

Three sampling methods are compared for efficiency on a number of test problems of various complexity for which analytic quadratures are available. The methods compared are Monte Carlo with pseudo-random numbers, Latin Hypercube Sampling, and Quasi Monte Carlo with sampling based on Sobol’ sequences. Generally results show superior performance of the Quasi Monte Carlo approach based on Sobol’ s...

متن کامل

Markov chain Monte Carlo for Structural Inference with Prior Information

This paper addresses the question of making inferences regarding features of conditional independence graphs in settings characterized by the availability of rich prior information regarding such features. We focus on Bayesian networks, and use Markov chain Monte Carlo to draw samples from the relevant posterior over graphs. We introduce a class of “locallyinformative priors” which are highly f...

متن کامل

A heterogeneous stochastic FEM framework for elliptic PDEs

We introduce a new concept of sparsity for the stochastic elliptic operator −div (a(x,ω)∇(·)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the...

متن کامل

Preprint SMU-HEP-10-13 Comparison of Algorithms for Monte Carlo Integration of a Multi-dimensional Gaussian Function

Monte Carlo integration of multi-dimensional Gaussian functions is widely applicable in the statistical analysis of functions of many variables, and such analysis is encountered in many fields of science. In this write-up, we compare two Monte Carlo integration algorithms from the Cuba library, Vegas, and Suave, in terms of convergence time and accuracy of evaluation of a multi-dimensional Gaus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2016